diff --git a/Test.ipynb b/Test.ipynb
deleted file mode 100644
index 4ca738159d67171ce1f430fa77f28ca621b77e5e..0000000000000000000000000000000000000000
--- a/Test.ipynb
+++ /dev/null
@@ -1,237 +0,0 @@
-{
- "cells": [
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Test Pytorch"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "tensor([[ 0.6650,  2.0888, -0.3361, -0.6212,  0.6276, -0.3091,  1.6601, -0.1404,\n",
-      "          0.0224, -1.1360],\n",
-      "        [-0.8311, -1.6385,  0.3011,  1.2989,  0.2328, -0.0061,  0.4039,  0.3956,\n",
-      "         -0.2067, -0.8877],\n",
-      "        [-0.2899, -1.7310, -0.4318,  1.3837,  3.1771,  1.7354,  0.3680, -0.0743,\n",
-      "         -0.1610,  0.8281],\n",
-      "        [-0.2591, -2.0913,  0.8630, -0.3533,  0.9323, -1.4520,  0.4476, -0.2588,\n",
-      "         -0.0963,  1.8449],\n",
-      "        [ 0.4599,  0.3258,  0.7780,  0.6943, -0.4343, -0.0536, -0.1049,  0.2867,\n",
-      "          0.5493, -1.2934],\n",
-      "        [-0.6990,  0.0783, -0.8745,  1.2521,  1.5363,  0.8770, -0.5319, -0.2629,\n",
-      "          0.7732, -0.5001],\n",
-      "        [-0.2902, -0.8901,  0.1904,  0.7456,  0.5802,  0.0443, -1.2447,  2.1954,\n",
-      "          0.5382,  0.2219],\n",
-      "        [ 1.0372, -0.7516,  0.7940,  0.8207,  0.6601,  0.0317,  0.1410, -1.7062,\n",
-      "         -0.6549,  0.6287],\n",
-      "        [ 0.6680,  1.0136, -0.0813, -1.4382,  0.4640,  1.2923, -1.0299,  0.5684,\n",
-      "          1.6626, -1.1921],\n",
-      "        [-1.1864, -0.6625, -1.0846,  0.7550, -0.8748,  0.2835, -1.4264,  1.0279,\n",
-      "         -0.6046,  0.6298],\n",
-      "        [-1.9253, -0.4960, -0.8379,  1.8726, -2.0282,  0.0869,  1.2508,  0.0390,\n",
-      "         -1.7213,  0.3269],\n",
-      "        [ 1.7196, -1.6188, -0.4604, -1.0196, -0.8883,  1.2987,  0.4795,  0.5581,\n",
-      "         -1.0138, -0.2184],\n",
-      "        [-0.6600,  0.5816, -0.6574,  0.4684,  1.2546, -0.4140, -0.2636,  0.4267,\n",
-      "          0.1736, -1.5019],\n",
-      "        [-0.8852,  0.6677, -1.3074, -1.2241, -1.4054,  0.0919,  1.5832,  1.4357,\n",
-      "         -1.9016,  0.7274]])\n",
-      "AlexNet(\n",
-      "  (features): Sequential(\n",
-      "    (0): Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2))\n",
-      "    (1): ReLU(inplace=True)\n",
-      "    (2): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)\n",
-      "    (3): Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))\n",
-      "    (4): ReLU(inplace=True)\n",
-      "    (5): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)\n",
-      "    (6): Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
-      "    (7): ReLU(inplace=True)\n",
-      "    (8): Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
-      "    (9): ReLU(inplace=True)\n",
-      "    (10): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
-      "    (11): ReLU(inplace=True)\n",
-      "    (12): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)\n",
-      "  )\n",
-      "  (avgpool): AdaptiveAvgPool2d(output_size=(6, 6))\n",
-      "  (classifier): Sequential(\n",
-      "    (0): Dropout(p=0.5, inplace=False)\n",
-      "    (1): Linear(in_features=9216, out_features=4096, bias=True)\n",
-      "    (2): ReLU(inplace=True)\n",
-      "    (3): Dropout(p=0.5, inplace=False)\n",
-      "    (4): Linear(in_features=4096, out_features=4096, bias=True)\n",
-      "    (5): ReLU(inplace=True)\n",
-      "    (6): Linear(in_features=4096, out_features=1000, bias=True)\n",
-      "  )\n",
-      ")\n"
-     ]
-    }
-   ],
-   "source": [
-    "import torch\n",
-    "\n",
-    "N, D = 14, 10\n",
-    "x = torch.randn(N, D).type(torch.FloatTensor)\n",
-    "print(x)\n",
-    "\n",
-    "from torchvision import models\n",
-    "\n",
-    "alexnet = models.alexnet()\n",
-    "print(alexnet)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Exercise 1: CNN on CIFAR10"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "See if cuda is available ==> it is not"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 1,
-   "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "CUDA is not available.  Training on CPU ...\n"
-     ]
-    }
-   ],
-   "source": [
-    "import torch\n",
-    "\n",
-    "# check if CUDA is available\n",
-    "train_on_gpu = torch.cuda.is_available()\n",
-    "\n",
-    "if not train_on_gpu:\n",
-    "    print(\"CUDA is not available.  Training on CPU ...\")\n",
-    "else:\n",
-    "    print(\"CUDA is available!  Training on GPU ...\")"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "Load the CIFAR10 dataset"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 3,
-   "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Files already downloaded and verified\n",
-      "Files already downloaded and verified\n"
-     ]
-    }
-   ],
-   "source": [
-    "import numpy as np\n",
-    "from torchvision import datasets, transforms\n",
-    "from torch.utils.data.sampler import SubsetRandomSampler\n",
-    "\n",
-    "# number of subprocesses to use for data loading\n",
-    "num_workers = 0\n",
-    "# how many samples per batch to load\n",
-    "batch_size = 20\n",
-    "# percentage of training set to use as validation\n",
-    "valid_size = 0.2\n",
-    "\n",
-    "# convert data to a normalized torch.FloatTensor\n",
-    "transform = transforms.Compose(\n",
-    "    [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]\n",
-    ")\n",
-    "\n",
-    "# choose the training and test datasets\n",
-    "train_data = datasets.CIFAR10(\"data\", train=True, download=True, transform=transform)\n",
-    "test_data = datasets.CIFAR10(\"data\", train=False, download=True, transform=transform)\n",
-    "\n",
-    "# obtain training indices that will be used for validation\n",
-    "num_train = len(train_data)\n",
-    "indices = list(range(num_train))\n",
-    "np.random.shuffle(indices)\n",
-    "split = int(np.floor(valid_size * num_train))\n",
-    "train_idx, valid_idx = indices[split:], indices[:split]\n",
-    "\n",
-    "# define samplers for obtaining training and validation batches\n",
-    "train_sampler = SubsetRandomSampler(train_idx)\n",
-    "valid_sampler = SubsetRandomSampler(valid_idx)\n",
-    "\n",
-    "# prepare data loaders (combine dataset and sampler)\n",
-    "train_loader = torch.utils.data.DataLoader(\n",
-    "    train_data, batch_size=batch_size, sampler=train_sampler, num_workers=num_workers\n",
-    ")\n",
-    "valid_loader = torch.utils.data.DataLoader(\n",
-    "    train_data, batch_size=batch_size, sampler=valid_sampler, num_workers=num_workers\n",
-    ")\n",
-    "test_loader = torch.utils.data.DataLoader(\n",
-    "    test_data, batch_size=batch_size, num_workers=num_workers\n",
-    ")\n",
-    "\n",
-    "# specify the image classes\n",
-    "classes = [\n",
-    "    \"airplane\",\n",
-    "    \"automobile\",\n",
-    "    \"bird\",\n",
-    "    \"cat\",\n",
-    "    \"deer\",\n",
-    "    \"dog\",\n",
-    "    \"frog\",\n",
-    "    \"horse\",\n",
-    "    \"ship\",\n",
-    "    \"truck\",\n",
-    "]"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": []
-  }
- ],
- "metadata": {
-  "kernelspec": {
-   "display_name": "env",
-   "language": "python",
-   "name": "python3"
-  },
-  "language_info": {
-   "codemirror_mode": {
-    "name": "ipython",
-    "version": 3
-   },
-   "file_extension": ".py",
-   "mimetype": "text/x-python",
-   "name": "python",
-   "nbconvert_exporter": "python",
-   "pygments_lexer": "ipython3",
-   "version": "3.10.6"
-  }
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}