diff --git a/TD2 Deep Learning_AS.ipynb b/TD2 Deep Learning_AS.ipynb index 016f883862a5d69006a9cde5c58382c96bb86a37..dd43adfad90ed326a828584fb7fd3e2adb11a640 100644 --- a/TD2 Deep Learning_AS.ipynb +++ b/TD2 Deep Learning_AS.ipynb @@ -1671,7 +1671,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 1, "id": "be2d31f5", "metadata": {}, "outputs": [ @@ -1682,8 +1682,8 @@ "traceback": [ "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[1;31mFileNotFoundError\u001b[0m Traceback (most recent call last)", - "\u001b[1;32mc:\\Users\\arman\\Desktop\\Cours_Centrale\\Apprentissage_profond\\BE2\\mod_4_6-td2\\TD2 Deep Learning_AS.ipynb Cell 42\u001b[0m line \u001b[0;36m3\n\u001b[0;32m <a href='vscode-notebook-cell:/c%3A/Users/arman/Desktop/Cours_Centrale/Apprentissage_profond/BE2/mod_4_6-td2/TD2%20Deep%20Learning_AS.ipynb#X53sZmlsZQ%3D%3D?line=33'>34</a>\u001b[0m data_dir \u001b[39m=\u001b[39m \u001b[39m\"\u001b[39m\u001b[39mhymenoptera_data\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[0;32m <a href='vscode-notebook-cell:/c%3A/Users/arman/Desktop/Cours_Centrale/Apprentissage_profond/BE2/mod_4_6-td2/TD2%20Deep%20Learning_AS.ipynb#X53sZmlsZQ%3D%3D?line=34'>35</a>\u001b[0m \u001b[39m# Create train and validation datasets and loaders\u001b[39;00m\n\u001b[1;32m---> <a href='vscode-notebook-cell:/c%3A/Users/arman/Desktop/Cours_Centrale/Apprentissage_profond/BE2/mod_4_6-td2/TD2%20Deep%20Learning_AS.ipynb#X53sZmlsZQ%3D%3D?line=35'>36</a>\u001b[0m image_datasets \u001b[39m=\u001b[39m {\n\u001b[0;32m <a href='vscode-notebook-cell:/c%3A/Users/arman/Desktop/Cours_Centrale/Apprentissage_profond/BE2/mod_4_6-td2/TD2%20Deep%20Learning_AS.ipynb#X53sZmlsZQ%3D%3D?line=36'>37</a>\u001b[0m x: datasets\u001b[39m.\u001b[39;49mImageFolder(os\u001b[39m.\u001b[39;49mpath\u001b[39m.\u001b[39;49mjoin(data_dir, x), data_transforms[x])\n\u001b[0;32m <a href='vscode-notebook-cell:/c%3A/Users/arman/Desktop/Cours_Centrale/Apprentissage_profond/BE2/mod_4_6-td2/TD2%20Deep%20Learning_AS.ipynb#X53sZmlsZQ%3D%3D?line=37'>38</a>\u001b[0m \u001b[39mfor\u001b[39;49;00m x \u001b[39min\u001b[39;49;00m [\u001b[39m\"\u001b[39;49m\u001b[39mtrain\u001b[39;49m\u001b[39m\"\u001b[39;49m, \u001b[39m\"\u001b[39;49m\u001b[39mval\u001b[39;49m\u001b[39m\"\u001b[39;49m]\n\u001b[0;32m <a href='vscode-notebook-cell:/c%3A/Users/arman/Desktop/Cours_Centrale/Apprentissage_profond/BE2/mod_4_6-td2/TD2%20Deep%20Learning_AS.ipynb#X53sZmlsZQ%3D%3D?line=38'>39</a>\u001b[0m }\n\u001b[0;32m <a href='vscode-notebook-cell:/c%3A/Users/arman/Desktop/Cours_Centrale/Apprentissage_profond/BE2/mod_4_6-td2/TD2%20Deep%20Learning_AS.ipynb#X53sZmlsZQ%3D%3D?line=39'>40</a>\u001b[0m dataloaders \u001b[39m=\u001b[39m {\n\u001b[0;32m <a href='vscode-notebook-cell:/c%3A/Users/arman/Desktop/Cours_Centrale/Apprentissage_profond/BE2/mod_4_6-td2/TD2%20Deep%20Learning_AS.ipynb#X53sZmlsZQ%3D%3D?line=40'>41</a>\u001b[0m x: torch\u001b[39m.\u001b[39mutils\u001b[39m.\u001b[39mdata\u001b[39m.\u001b[39mDataLoader(\n\u001b[0;32m <a href='vscode-notebook-cell:/c%3A/Users/arman/Desktop/Cours_Centrale/Apprentissage_profond/BE2/mod_4_6-td2/TD2%20Deep%20Learning_AS.ipynb#X53sZmlsZQ%3D%3D?line=41'>42</a>\u001b[0m image_datasets[x], batch_size\u001b[39m=\u001b[39m\u001b[39m4\u001b[39m, shuffle\u001b[39m=\u001b[39m\u001b[39mTrue\u001b[39;00m, num_workers\u001b[39m=\u001b[39m\u001b[39m0\u001b[39m\n\u001b[0;32m <a href='vscode-notebook-cell:/c%3A/Users/arman/Desktop/Cours_Centrale/Apprentissage_profond/BE2/mod_4_6-td2/TD2%20Deep%20Learning_AS.ipynb#X53sZmlsZQ%3D%3D?line=42'>43</a>\u001b[0m )\n\u001b[0;32m <a href='vscode-notebook-cell:/c%3A/Users/arman/Desktop/Cours_Centrale/Apprentissage_profond/BE2/mod_4_6-td2/TD2%20Deep%20Learning_AS.ipynb#X53sZmlsZQ%3D%3D?line=43'>44</a>\u001b[0m \u001b[39mfor\u001b[39;00m x \u001b[39min\u001b[39;00m [\u001b[39m\"\u001b[39m\u001b[39mtrain\u001b[39m\u001b[39m\"\u001b[39m, \u001b[39m\"\u001b[39m\u001b[39mval\u001b[39m\u001b[39m\"\u001b[39m]\n\u001b[0;32m <a href='vscode-notebook-cell:/c%3A/Users/arman/Desktop/Cours_Centrale/Apprentissage_profond/BE2/mod_4_6-td2/TD2%20Deep%20Learning_AS.ipynb#X53sZmlsZQ%3D%3D?line=44'>45</a>\u001b[0m }\n\u001b[0;32m <a href='vscode-notebook-cell:/c%3A/Users/arman/Desktop/Cours_Centrale/Apprentissage_profond/BE2/mod_4_6-td2/TD2%20Deep%20Learning_AS.ipynb#X53sZmlsZQ%3D%3D?line=45'>46</a>\u001b[0m dataset_sizes \u001b[39m=\u001b[39m {x: \u001b[39mlen\u001b[39m(image_datasets[x]) \u001b[39mfor\u001b[39;00m x \u001b[39min\u001b[39;00m [\u001b[39m\"\u001b[39m\u001b[39mtrain\u001b[39m\u001b[39m\"\u001b[39m, \u001b[39m\"\u001b[39m\u001b[39mval\u001b[39m\u001b[39m\"\u001b[39m]}\n", - "\u001b[1;32mc:\\Users\\arman\\Desktop\\Cours_Centrale\\Apprentissage_profond\\BE2\\mod_4_6-td2\\TD2 Deep Learning_AS.ipynb Cell 42\u001b[0m line \u001b[0;36m3\n\u001b[0;32m <a href='vscode-notebook-cell:/c%3A/Users/arman/Desktop/Cours_Centrale/Apprentissage_profond/BE2/mod_4_6-td2/TD2%20Deep%20Learning_AS.ipynb#X53sZmlsZQ%3D%3D?line=33'>34</a>\u001b[0m data_dir \u001b[39m=\u001b[39m \u001b[39m\"\u001b[39m\u001b[39mhymenoptera_data\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[0;32m <a href='vscode-notebook-cell:/c%3A/Users/arman/Desktop/Cours_Centrale/Apprentissage_profond/BE2/mod_4_6-td2/TD2%20Deep%20Learning_AS.ipynb#X53sZmlsZQ%3D%3D?line=34'>35</a>\u001b[0m \u001b[39m# Create train and validation datasets and loaders\u001b[39;00m\n\u001b[0;32m <a href='vscode-notebook-cell:/c%3A/Users/arman/Desktop/Cours_Centrale/Apprentissage_profond/BE2/mod_4_6-td2/TD2%20Deep%20Learning_AS.ipynb#X53sZmlsZQ%3D%3D?line=35'>36</a>\u001b[0m image_datasets \u001b[39m=\u001b[39m {\n\u001b[1;32m---> <a href='vscode-notebook-cell:/c%3A/Users/arman/Desktop/Cours_Centrale/Apprentissage_profond/BE2/mod_4_6-td2/TD2%20Deep%20Learning_AS.ipynb#X53sZmlsZQ%3D%3D?line=36'>37</a>\u001b[0m x: datasets\u001b[39m.\u001b[39;49mImageFolder(os\u001b[39m.\u001b[39;49mpath\u001b[39m.\u001b[39;49mjoin(data_dir, x), data_transforms[x])\n\u001b[0;32m <a href='vscode-notebook-cell:/c%3A/Users/arman/Desktop/Cours_Centrale/Apprentissage_profond/BE2/mod_4_6-td2/TD2%20Deep%20Learning_AS.ipynb#X53sZmlsZQ%3D%3D?line=37'>38</a>\u001b[0m \u001b[39mfor\u001b[39;00m x \u001b[39min\u001b[39;00m [\u001b[39m\"\u001b[39m\u001b[39mtrain\u001b[39m\u001b[39m\"\u001b[39m, \u001b[39m\"\u001b[39m\u001b[39mval\u001b[39m\u001b[39m\"\u001b[39m]\n\u001b[0;32m <a href='vscode-notebook-cell:/c%3A/Users/arman/Desktop/Cours_Centrale/Apprentissage_profond/BE2/mod_4_6-td2/TD2%20Deep%20Learning_AS.ipynb#X53sZmlsZQ%3D%3D?line=38'>39</a>\u001b[0m }\n\u001b[0;32m <a href='vscode-notebook-cell:/c%3A/Users/arman/Desktop/Cours_Centrale/Apprentissage_profond/BE2/mod_4_6-td2/TD2%20Deep%20Learning_AS.ipynb#X53sZmlsZQ%3D%3D?line=39'>40</a>\u001b[0m dataloaders \u001b[39m=\u001b[39m {\n\u001b[0;32m <a href='vscode-notebook-cell:/c%3A/Users/arman/Desktop/Cours_Centrale/Apprentissage_profond/BE2/mod_4_6-td2/TD2%20Deep%20Learning_AS.ipynb#X53sZmlsZQ%3D%3D?line=40'>41</a>\u001b[0m x: torch\u001b[39m.\u001b[39mutils\u001b[39m.\u001b[39mdata\u001b[39m.\u001b[39mDataLoader(\n\u001b[0;32m <a href='vscode-notebook-cell:/c%3A/Users/arman/Desktop/Cours_Centrale/Apprentissage_profond/BE2/mod_4_6-td2/TD2%20Deep%20Learning_AS.ipynb#X53sZmlsZQ%3D%3D?line=41'>42</a>\u001b[0m image_datasets[x], batch_size\u001b[39m=\u001b[39m\u001b[39m4\u001b[39m, shuffle\u001b[39m=\u001b[39m\u001b[39mTrue\u001b[39;00m, num_workers\u001b[39m=\u001b[39m\u001b[39m0\u001b[39m\n\u001b[0;32m <a href='vscode-notebook-cell:/c%3A/Users/arman/Desktop/Cours_Centrale/Apprentissage_profond/BE2/mod_4_6-td2/TD2%20Deep%20Learning_AS.ipynb#X53sZmlsZQ%3D%3D?line=42'>43</a>\u001b[0m )\n\u001b[0;32m <a href='vscode-notebook-cell:/c%3A/Users/arman/Desktop/Cours_Centrale/Apprentissage_profond/BE2/mod_4_6-td2/TD2%20Deep%20Learning_AS.ipynb#X53sZmlsZQ%3D%3D?line=43'>44</a>\u001b[0m \u001b[39mfor\u001b[39;00m x \u001b[39min\u001b[39;00m [\u001b[39m\"\u001b[39m\u001b[39mtrain\u001b[39m\u001b[39m\"\u001b[39m, \u001b[39m\"\u001b[39m\u001b[39mval\u001b[39m\u001b[39m\"\u001b[39m]\n\u001b[0;32m <a href='vscode-notebook-cell:/c%3A/Users/arman/Desktop/Cours_Centrale/Apprentissage_profond/BE2/mod_4_6-td2/TD2%20Deep%20Learning_AS.ipynb#X53sZmlsZQ%3D%3D?line=44'>45</a>\u001b[0m }\n\u001b[0;32m <a href='vscode-notebook-cell:/c%3A/Users/arman/Desktop/Cours_Centrale/Apprentissage_profond/BE2/mod_4_6-td2/TD2%20Deep%20Learning_AS.ipynb#X53sZmlsZQ%3D%3D?line=45'>46</a>\u001b[0m dataset_sizes \u001b[39m=\u001b[39m {x: \u001b[39mlen\u001b[39m(image_datasets[x]) \u001b[39mfor\u001b[39;00m x \u001b[39min\u001b[39;00m [\u001b[39m\"\u001b[39m\u001b[39mtrain\u001b[39m\u001b[39m\"\u001b[39m, \u001b[39m\"\u001b[39m\u001b[39mval\u001b[39m\u001b[39m\"\u001b[39m]}\n", + "\u001b[1;32mc:\\Users\\arman\\Desktop\\Cours_Centrale\\Apprentissage_profond\\BE2\\mod-4-6-td-2-as\\TD2 Deep Learning_AS.ipynb Cell 42\u001b[0m line \u001b[0;36m3\n\u001b[0;32m <a href='vscode-notebook-cell:/c%3A/Users/arman/Desktop/Cours_Centrale/Apprentissage_profond/BE2/mod-4-6-td-2-as/TD2%20Deep%20Learning_AS.ipynb#X56sZmlsZQ%3D%3D?line=33'>34</a>\u001b[0m data_dir \u001b[39m=\u001b[39m \u001b[39m\"\u001b[39m\u001b[39mhymenoptera_data\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[0;32m <a href='vscode-notebook-cell:/c%3A/Users/arman/Desktop/Cours_Centrale/Apprentissage_profond/BE2/mod-4-6-td-2-as/TD2%20Deep%20Learning_AS.ipynb#X56sZmlsZQ%3D%3D?line=34'>35</a>\u001b[0m \u001b[39m# Create train and validation datasets and loaders\u001b[39;00m\n\u001b[1;32m---> <a href='vscode-notebook-cell:/c%3A/Users/arman/Desktop/Cours_Centrale/Apprentissage_profond/BE2/mod-4-6-td-2-as/TD2%20Deep%20Learning_AS.ipynb#X56sZmlsZQ%3D%3D?line=35'>36</a>\u001b[0m image_datasets \u001b[39m=\u001b[39m {\n\u001b[0;32m <a href='vscode-notebook-cell:/c%3A/Users/arman/Desktop/Cours_Centrale/Apprentissage_profond/BE2/mod-4-6-td-2-as/TD2%20Deep%20Learning_AS.ipynb#X56sZmlsZQ%3D%3D?line=36'>37</a>\u001b[0m x: datasets\u001b[39m.\u001b[39;49mImageFolder(os\u001b[39m.\u001b[39;49mpath\u001b[39m.\u001b[39;49mjoin(data_dir, x), data_transforms[x])\n\u001b[0;32m <a href='vscode-notebook-cell:/c%3A/Users/arman/Desktop/Cours_Centrale/Apprentissage_profond/BE2/mod-4-6-td-2-as/TD2%20Deep%20Learning_AS.ipynb#X56sZmlsZQ%3D%3D?line=37'>38</a>\u001b[0m \u001b[39mfor\u001b[39;49;00m x \u001b[39min\u001b[39;49;00m [\u001b[39m\"\u001b[39;49m\u001b[39mtrain\u001b[39;49m\u001b[39m\"\u001b[39;49m, \u001b[39m\"\u001b[39;49m\u001b[39mval\u001b[39;49m\u001b[39m\"\u001b[39;49m]\n\u001b[0;32m <a href='vscode-notebook-cell:/c%3A/Users/arman/Desktop/Cours_Centrale/Apprentissage_profond/BE2/mod-4-6-td-2-as/TD2%20Deep%20Learning_AS.ipynb#X56sZmlsZQ%3D%3D?line=38'>39</a>\u001b[0m }\n\u001b[0;32m <a href='vscode-notebook-cell:/c%3A/Users/arman/Desktop/Cours_Centrale/Apprentissage_profond/BE2/mod-4-6-td-2-as/TD2%20Deep%20Learning_AS.ipynb#X56sZmlsZQ%3D%3D?line=39'>40</a>\u001b[0m dataloaders \u001b[39m=\u001b[39m {\n\u001b[0;32m <a href='vscode-notebook-cell:/c%3A/Users/arman/Desktop/Cours_Centrale/Apprentissage_profond/BE2/mod-4-6-td-2-as/TD2%20Deep%20Learning_AS.ipynb#X56sZmlsZQ%3D%3D?line=40'>41</a>\u001b[0m x: torch\u001b[39m.\u001b[39mutils\u001b[39m.\u001b[39mdata\u001b[39m.\u001b[39mDataLoader(\n\u001b[0;32m <a href='vscode-notebook-cell:/c%3A/Users/arman/Desktop/Cours_Centrale/Apprentissage_profond/BE2/mod-4-6-td-2-as/TD2%20Deep%20Learning_AS.ipynb#X56sZmlsZQ%3D%3D?line=41'>42</a>\u001b[0m image_datasets[x], batch_size\u001b[39m=\u001b[39m\u001b[39m4\u001b[39m, shuffle\u001b[39m=\u001b[39m\u001b[39mTrue\u001b[39;00m, num_workers\u001b[39m=\u001b[39m\u001b[39m0\u001b[39m\n\u001b[0;32m <a href='vscode-notebook-cell:/c%3A/Users/arman/Desktop/Cours_Centrale/Apprentissage_profond/BE2/mod-4-6-td-2-as/TD2%20Deep%20Learning_AS.ipynb#X56sZmlsZQ%3D%3D?line=42'>43</a>\u001b[0m )\n\u001b[0;32m <a href='vscode-notebook-cell:/c%3A/Users/arman/Desktop/Cours_Centrale/Apprentissage_profond/BE2/mod-4-6-td-2-as/TD2%20Deep%20Learning_AS.ipynb#X56sZmlsZQ%3D%3D?line=43'>44</a>\u001b[0m \u001b[39mfor\u001b[39;00m x \u001b[39min\u001b[39;00m [\u001b[39m\"\u001b[39m\u001b[39mtrain\u001b[39m\u001b[39m\"\u001b[39m, \u001b[39m\"\u001b[39m\u001b[39mval\u001b[39m\u001b[39m\"\u001b[39m]\n\u001b[0;32m <a href='vscode-notebook-cell:/c%3A/Users/arman/Desktop/Cours_Centrale/Apprentissage_profond/BE2/mod-4-6-td-2-as/TD2%20Deep%20Learning_AS.ipynb#X56sZmlsZQ%3D%3D?line=44'>45</a>\u001b[0m }\n\u001b[0;32m <a href='vscode-notebook-cell:/c%3A/Users/arman/Desktop/Cours_Centrale/Apprentissage_profond/BE2/mod-4-6-td-2-as/TD2%20Deep%20Learning_AS.ipynb#X56sZmlsZQ%3D%3D?line=45'>46</a>\u001b[0m dataset_sizes \u001b[39m=\u001b[39m {x: \u001b[39mlen\u001b[39m(image_datasets[x]) \u001b[39mfor\u001b[39;00m x \u001b[39min\u001b[39;00m [\u001b[39m\"\u001b[39m\u001b[39mtrain\u001b[39m\u001b[39m\"\u001b[39m, \u001b[39m\"\u001b[39m\u001b[39mval\u001b[39m\u001b[39m\"\u001b[39m]}\n", + "\u001b[1;32mc:\\Users\\arman\\Desktop\\Cours_Centrale\\Apprentissage_profond\\BE2\\mod-4-6-td-2-as\\TD2 Deep Learning_AS.ipynb Cell 42\u001b[0m line \u001b[0;36m3\n\u001b[0;32m <a href='vscode-notebook-cell:/c%3A/Users/arman/Desktop/Cours_Centrale/Apprentissage_profond/BE2/mod-4-6-td-2-as/TD2%20Deep%20Learning_AS.ipynb#X56sZmlsZQ%3D%3D?line=33'>34</a>\u001b[0m data_dir \u001b[39m=\u001b[39m \u001b[39m\"\u001b[39m\u001b[39mhymenoptera_data\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[0;32m <a href='vscode-notebook-cell:/c%3A/Users/arman/Desktop/Cours_Centrale/Apprentissage_profond/BE2/mod-4-6-td-2-as/TD2%20Deep%20Learning_AS.ipynb#X56sZmlsZQ%3D%3D?line=34'>35</a>\u001b[0m \u001b[39m# Create train and validation datasets and loaders\u001b[39;00m\n\u001b[0;32m <a href='vscode-notebook-cell:/c%3A/Users/arman/Desktop/Cours_Centrale/Apprentissage_profond/BE2/mod-4-6-td-2-as/TD2%20Deep%20Learning_AS.ipynb#X56sZmlsZQ%3D%3D?line=35'>36</a>\u001b[0m image_datasets \u001b[39m=\u001b[39m {\n\u001b[1;32m---> <a href='vscode-notebook-cell:/c%3A/Users/arman/Desktop/Cours_Centrale/Apprentissage_profond/BE2/mod-4-6-td-2-as/TD2%20Deep%20Learning_AS.ipynb#X56sZmlsZQ%3D%3D?line=36'>37</a>\u001b[0m x: datasets\u001b[39m.\u001b[39;49mImageFolder(os\u001b[39m.\u001b[39;49mpath\u001b[39m.\u001b[39;49mjoin(data_dir, x), data_transforms[x])\n\u001b[0;32m <a href='vscode-notebook-cell:/c%3A/Users/arman/Desktop/Cours_Centrale/Apprentissage_profond/BE2/mod-4-6-td-2-as/TD2%20Deep%20Learning_AS.ipynb#X56sZmlsZQ%3D%3D?line=37'>38</a>\u001b[0m \u001b[39mfor\u001b[39;00m x \u001b[39min\u001b[39;00m [\u001b[39m\"\u001b[39m\u001b[39mtrain\u001b[39m\u001b[39m\"\u001b[39m, \u001b[39m\"\u001b[39m\u001b[39mval\u001b[39m\u001b[39m\"\u001b[39m]\n\u001b[0;32m <a href='vscode-notebook-cell:/c%3A/Users/arman/Desktop/Cours_Centrale/Apprentissage_profond/BE2/mod-4-6-td-2-as/TD2%20Deep%20Learning_AS.ipynb#X56sZmlsZQ%3D%3D?line=38'>39</a>\u001b[0m }\n\u001b[0;32m <a href='vscode-notebook-cell:/c%3A/Users/arman/Desktop/Cours_Centrale/Apprentissage_profond/BE2/mod-4-6-td-2-as/TD2%20Deep%20Learning_AS.ipynb#X56sZmlsZQ%3D%3D?line=39'>40</a>\u001b[0m dataloaders \u001b[39m=\u001b[39m {\n\u001b[0;32m <a href='vscode-notebook-cell:/c%3A/Users/arman/Desktop/Cours_Centrale/Apprentissage_profond/BE2/mod-4-6-td-2-as/TD2%20Deep%20Learning_AS.ipynb#X56sZmlsZQ%3D%3D?line=40'>41</a>\u001b[0m x: torch\u001b[39m.\u001b[39mutils\u001b[39m.\u001b[39mdata\u001b[39m.\u001b[39mDataLoader(\n\u001b[0;32m <a href='vscode-notebook-cell:/c%3A/Users/arman/Desktop/Cours_Centrale/Apprentissage_profond/BE2/mod-4-6-td-2-as/TD2%20Deep%20Learning_AS.ipynb#X56sZmlsZQ%3D%3D?line=41'>42</a>\u001b[0m image_datasets[x], batch_size\u001b[39m=\u001b[39m\u001b[39m4\u001b[39m, shuffle\u001b[39m=\u001b[39m\u001b[39mTrue\u001b[39;00m, num_workers\u001b[39m=\u001b[39m\u001b[39m0\u001b[39m\n\u001b[0;32m <a href='vscode-notebook-cell:/c%3A/Users/arman/Desktop/Cours_Centrale/Apprentissage_profond/BE2/mod-4-6-td-2-as/TD2%20Deep%20Learning_AS.ipynb#X56sZmlsZQ%3D%3D?line=42'>43</a>\u001b[0m )\n\u001b[0;32m <a href='vscode-notebook-cell:/c%3A/Users/arman/Desktop/Cours_Centrale/Apprentissage_profond/BE2/mod-4-6-td-2-as/TD2%20Deep%20Learning_AS.ipynb#X56sZmlsZQ%3D%3D?line=43'>44</a>\u001b[0m \u001b[39mfor\u001b[39;00m x \u001b[39min\u001b[39;00m [\u001b[39m\"\u001b[39m\u001b[39mtrain\u001b[39m\u001b[39m\"\u001b[39m, \u001b[39m\"\u001b[39m\u001b[39mval\u001b[39m\u001b[39m\"\u001b[39m]\n\u001b[0;32m <a href='vscode-notebook-cell:/c%3A/Users/arman/Desktop/Cours_Centrale/Apprentissage_profond/BE2/mod-4-6-td-2-as/TD2%20Deep%20Learning_AS.ipynb#X56sZmlsZQ%3D%3D?line=44'>45</a>\u001b[0m }\n\u001b[0;32m <a href='vscode-notebook-cell:/c%3A/Users/arman/Desktop/Cours_Centrale/Apprentissage_profond/BE2/mod-4-6-td-2-as/TD2%20Deep%20Learning_AS.ipynb#X56sZmlsZQ%3D%3D?line=45'>46</a>\u001b[0m dataset_sizes \u001b[39m=\u001b[39m {x: \u001b[39mlen\u001b[39m(image_datasets[x]) \u001b[39mfor\u001b[39;00m x \u001b[39min\u001b[39;00m [\u001b[39m\"\u001b[39m\u001b[39mtrain\u001b[39m\u001b[39m\"\u001b[39m, \u001b[39m\"\u001b[39m\u001b[39mval\u001b[39m\u001b[39m\"\u001b[39m]}\n", "File \u001b[1;32m~\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\torchvision\\datasets\\folder.py:309\u001b[0m, in \u001b[0;36mImageFolder.__init__\u001b[1;34m(self, root, transform, target_transform, loader, is_valid_file)\u001b[0m\n\u001b[0;32m 301\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39m__init__\u001b[39m(\n\u001b[0;32m 302\u001b[0m \u001b[39mself\u001b[39m,\n\u001b[0;32m 303\u001b[0m root: \u001b[39mstr\u001b[39m,\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 307\u001b[0m is_valid_file: Optional[Callable[[\u001b[39mstr\u001b[39m], \u001b[39mbool\u001b[39m]] \u001b[39m=\u001b[39m \u001b[39mNone\u001b[39;00m,\n\u001b[0;32m 308\u001b[0m ):\n\u001b[1;32m--> 309\u001b[0m \u001b[39msuper\u001b[39;49m()\u001b[39m.\u001b[39;49m\u001b[39m__init__\u001b[39;49m(\n\u001b[0;32m 310\u001b[0m root,\n\u001b[0;32m 311\u001b[0m loader,\n\u001b[0;32m 312\u001b[0m IMG_EXTENSIONS \u001b[39mif\u001b[39;49;00m is_valid_file \u001b[39mis\u001b[39;49;00m \u001b[39mNone\u001b[39;49;00m \u001b[39melse\u001b[39;49;00m \u001b[39mNone\u001b[39;49;00m,\n\u001b[0;32m 313\u001b[0m transform\u001b[39m=\u001b[39;49mtransform,\n\u001b[0;32m 314\u001b[0m target_transform\u001b[39m=\u001b[39;49mtarget_transform,\n\u001b[0;32m 315\u001b[0m is_valid_file\u001b[39m=\u001b[39;49mis_valid_file,\n\u001b[0;32m 316\u001b[0m )\n\u001b[0;32m 317\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mimgs \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39msamples\n", "File \u001b[1;32m~\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\torchvision\\datasets\\folder.py:144\u001b[0m, in \u001b[0;36mDatasetFolder.__init__\u001b[1;34m(self, root, loader, extensions, transform, target_transform, is_valid_file)\u001b[0m\n\u001b[0;32m 134\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39m__init__\u001b[39m(\n\u001b[0;32m 135\u001b[0m \u001b[39mself\u001b[39m,\n\u001b[0;32m 136\u001b[0m root: \u001b[39mstr\u001b[39m,\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 141\u001b[0m is_valid_file: Optional[Callable[[\u001b[39mstr\u001b[39m], \u001b[39mbool\u001b[39m]] \u001b[39m=\u001b[39m \u001b[39mNone\u001b[39;00m,\n\u001b[0;32m 142\u001b[0m ) \u001b[39m-\u001b[39m\u001b[39m>\u001b[39m \u001b[39mNone\u001b[39;00m:\n\u001b[0;32m 143\u001b[0m \u001b[39msuper\u001b[39m()\u001b[39m.\u001b[39m\u001b[39m__init__\u001b[39m(root, transform\u001b[39m=\u001b[39mtransform, target_transform\u001b[39m=\u001b[39mtarget_transform)\n\u001b[1;32m--> 144\u001b[0m classes, class_to_idx \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mfind_classes(\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mroot)\n\u001b[0;32m 145\u001b[0m samples \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mmake_dataset(\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mroot, class_to_idx, extensions, is_valid_file)\n\u001b[0;32m 147\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mloader \u001b[39m=\u001b[39m loader\n", "File \u001b[1;32m~\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\torchvision\\datasets\\folder.py:218\u001b[0m, in \u001b[0;36mDatasetFolder.find_classes\u001b[1;34m(self, directory)\u001b[0m\n\u001b[0;32m 191\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mfind_classes\u001b[39m(\u001b[39mself\u001b[39m, directory: \u001b[39mstr\u001b[39m) \u001b[39m-\u001b[39m\u001b[39m>\u001b[39m Tuple[List[\u001b[39mstr\u001b[39m], Dict[\u001b[39mstr\u001b[39m, \u001b[39mint\u001b[39m]]:\n\u001b[0;32m 192\u001b[0m \u001b[39m \u001b[39m\u001b[39m\"\"\"Find the class folders in a dataset structured as follows::\u001b[39;00m\n\u001b[0;32m 193\u001b[0m \n\u001b[0;32m 194\u001b[0m \u001b[39m directory/\u001b[39;00m\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 216\u001b[0m \u001b[39m (Tuple[List[str], Dict[str, int]]): List of all classes and dictionary mapping each class to an index.\u001b[39;00m\n\u001b[0;32m 217\u001b[0m \u001b[39m \"\"\"\u001b[39;00m\n\u001b[1;32m--> 218\u001b[0m \u001b[39mreturn\u001b[39;00m find_classes(directory)\n",