Defintions

Stacks and queues allow the manipulation of values (or objects)
sequentially. They have many operations, the main ones are:

addition (push) and removal (pop), but with different order
strategies:

push pop push

T~ T

4
3
2
1

= IN[w(PH

* pop

e stacks follow the Last-In, First-Out (LIFO) principle
e queues follows the First-In, First-Out (FIFO) principle

Note that stacks and queues define the operations and their results, but not their
implementation.

Operations

o« empty() : Checks for emptiness.

e full() :Checksifit's full (if a maximum size was provided during creation).
e get () : Returns (and removes) an element.

e push() : Adds an element.

e size() :Returns the size of the list.

e reverse() : Reverses the order of elements.

e peek() : Returns an element (without removing it).

Stacks

A stack is an abstract data type that follows the Last-In, First-
Out (LIFO) principle

e It supports operations on a collection of elements.
e The element inserted last is at the head.
e Easily achievable with a simple list! See this Python tutorial

https://docs.python.org/3/tutorial/datastructures.html

Stacks (using lists)

stack = [3, 4, 5]
stack.append(6) # push
stack.append(7)

print(stack)
stack.pop() # get

print (stack)
stack.pop()

stack.pop()
print(stack)
print(stack[-1]) # peek

[3, 4, 5, 6, 7]
[3, 4, 5, 6]
[3, 4]

4

Stacks (using modules)

https://docs.python.org/3/library/queue.html

import gueue
pile = queue.LifoQueue()

for i in range(5): pile.put(i)

while not pile.empty():
print(pile.get(), end=" ")

4 3210

https://docs.python.org/3/library/queue.html

Stacks (using OOP)

Internally, will be based on an Array structure.

Stacks (using OOP)

Internally, will be based on an Array structure.

class Stack():
def init (self, values = []):
self. wvalues = []
for v in values:
self.push(v)

def push(self, v):
self. values.append(vVv)
return v

def get(self):
v = self. values.pop()
return v

def display(self):
for v in self. values:
print(v)

def size(self):
return len(self. values)

Stacks (using OOP)
data = ["A", "B", "C"]

s = Stack()

for d in data:
s.push(d)
e = s.pop()
print(e)

Qw

Queues

A stack is an abstract data type that follows the First-In, First-
Out (FIFO) principle

e Similar to a Srtack
e But the returned element is the first one inserted

Queues (list)

queue = [31 4! 5]
queue.append(6)
queue.append(7) # push

print (queue)
queue.pop(0) # get
print (queue)
queue.pop(0)
queue.pop(0)

print (queue)
print(queue[0]) # peek

[3, 4, 5] 6’ 7]
[4, 5, 6, 7]
[6, 7]

6

Queues (module)

import queue
g = queue.Queue()
for i in range (5): g.put(i)

while not g.empty():
print(g.get(), end=" ")

01234

Priority queues

A priority queue is a queue (or stack or list) that returns an
element based on the characteristics of a variable (priority).

e For a quantitative variable, it's the minimum or maximum of the queue. For other
types of variables (e.g., categories), any order relation is valid.

e Queues can exhibit the same behavior but have a different internal state: either
constantly updated or updated after reads/writes.

e The internal state can be preserved with a sorting function, thus optimizing the
complexity of the data structure.

Priority queues (module)

from heapqg import heapify, heappush, heappop
heap = [10, 8, 1, 2, 4, 9, 3, 4, 7]
heapify(heap)

heap
heappop (heap)
heap

heappush(heap, 5)

heap

Priority queues (using OOP)

class PriorityQueue(object):

def

def

def

def

def

def

__init (self):

self. dqueue = []

__str (self):

return ' '.join([str(i) for i in self. queue])
isEmpty(self):

return len(self. dqueue) == 0

insert(self, data):

self. queue.append(data)

size(self):
return len(self. queue)

delete(self):

min = 0

for i in range(0,len(self. dqueue)):
if self. dqueue[i][2] < self. queue[min][2]:

min = i

item = self. queue[min]

del self. queue[min]

return item

import queue
myQueue = queue.PriorityQueue()

Insert elements into the priority queue
myQueue.put(12)
myQueue.put (1)
myQueue.put(14)
myQueue.put(7)

Print the contents of the priority queue
while not myQueue.empty():
print (myQueue.get())

12
14

