Trees

Tree is a hierarchical data structure with nodes connected by
edges

* A non-linear data structures (multiple ways to traverse it)
» Nodes are connected by only one path (a series of edges) so trees have no cycle
» Edges are also called links, they can be traversed in both ways (no orientation)

Example of trees:

e Binary trees, binary search trees, N-ary trees, recursive call trees, etc.

 HOB (Horizontally Ordered Binary), AVL (Adelson-Velskii and Landis, self-balancing
trees), ...

o B-trees, forests, lattices, etc.

Definitions on trees

(similar to the ones for the binary trees)
Nodes - atreeis composed of nodes that containa value and children.
Edges - are the connections between nodes; nodes may contain a value.
Root - the topmost node in a tree; there can only be one root.

Parent and child - each node has a single parent and up to two children.
Leaf -nonode below that node.

Depth -the number of edges on the path from the root to that node.

Height - maximum depthin a tree.

Definitions on trees (cont.)

N-ary Tree - atree in which each node can have up to N children. Binary trees is the
case where N = 2.

Weight - a quantity is associated to the edges.

Degree - the number of child nodes it has. Binary tree is the case where degree is 2.

Subtree - aportion of a tree that is itself a tree.

Forest - a collection of trees not connected to each other.

Data structures (dicts + lists)

A simple way is the adjacency list using a dictionnary dict type.

tree

0o A

ioadds

draw tree(tree)

Data structures (dicts + named lists)

e A variation is to use a named variable for the list.

tree

= {

Ilall: {llneighborsll: ["b", Ilcll]},
Ilbll: {llneighborsll: ["d", Ilell]},
Ilcll: {llneighborsll: [Ilfll]},

"d": {"neighbors": []1},

e": {"neighbors": []},
"f": {nneighborslr: []}

tree["a"]["neighbors"]

Data structures (sets)

e The children are not ordered
o Children names are unique

tree

e A

set(["b", "c"1),
'+ set(["d", "e"]),
't oset(["E£"]),

't set(),

‘s set(),

': set()

MO o0 g |

Data structures (lists of lists)

e Each node is an entry in the list

e Childre are sub-lists

tree list

l—ll—ll—ll—|l—|l—ll—||
Q Hh 0O Q. Q O

o))

14
14
14
14
4
4
4

Data structures (tuples)

e Each node is the first tuple
e Children are additionnal tuply entries

tree = ("a", [
("b", [1).
("¢,
("d",
("e", [1)
1)
1)

1)

Class object

e The object contains a value and an unrestricted list of children

class Node:
def init (self, value, children = []):
self.value = value
self.children = children

def get all nodes(self):
nodes = [self.value]
for child in self.children:
nodes += child.get all nodes()
return nodes

def get all nodes iterative(self):

nodes = []

stack = [self]

while stack:
current node = stack.pop()
nodes.append(current node.value)
stack += current node.children

return nodes

root = Node("a", [
Node("b", [
Node ("d"),
Node("e"),
1)
Node("c", [
Node("f"),
1)
1)

or using root.children

root.get all nodes()

[lal’ Ibl, ldl, lel, lcl, lfl]

Weighted trees

Trees with a quantity associated to the edges

e Since we have a tree a way to store weights is using nodes values
e Root note weight is 0

Data structures (dicts for edges)

e To encode values in edges we need to add an extra value

tree

tree

® Qoo

[{'b": 0}, {'c': 0}],
[{'d": 0}, {'e": O}1],

a
b':

c': [{’
d': [,
e []

[('b",
[('d,
[("E,
L1,
[]

£': 0}1,

0), (‘¢'y 0)1,
0), (‘e’, 0)1,
0)1,

Weigthted trees as classes

class Node weight:
def init (self, data, weight=0):
self.data = data
self.children = []
self.weight = weight

tree = Node weight(1)

childl = Node weight(2, weight=5)
child2 = Node weight (3, weight=7)
tree.children = [childl, child2]

Exercise: Calculate the total weight of a tree

Go through all the nodes..

Exercise: Calculate the total weight of a tree

Go through all the nodes..

def get tree edges(root):
edges = []
stack = [(root, None))]

while stack:
node, parent data = stack.pop()

for child in node.children:
stack.append((child, node.data))
edges.append((node.data, child.data, child.weight))

return edges

tree = Node weight(1)
childl = Node weight (2, weight=5)
child2 = Node weight (3, weight=7)
tree.children = [childl, child2]
get tree edges(tree)

[(1, 2, 3), (1, 3, 7)]

sum(tpl[2] for tpl in get tree edges(tree))

Out[139]: 12

Exercise: Calculate the total weight of a tree

A recursive version:

def calculate total weight(node):
total weight = node.weight
for child in node.children:
total weight += calculate total weight(child)
return total weight

calculate total weight(tree)

12

An Edge class for edges

e To consider edges as objects

class Edge:
def init (self, source, target):
self.source = source
self.target = target

class Node:
def init (self, label):
self.label = label
self.children = []

class Tree:
def init (self, root label):
self.root = Node(root label)
self.edges = []

Visualize a tree

from graphviz import Digraph
from IPython.display import display

def draw tree(T):
dot = Digraph(format='png')

def add nodes and edges(tree, parent name=None):
for parent, children in tree.items():
dot.node(parent, parent)
if parent name:
dot.edge(parent name, parent)
add nodes and edges({child: [] for child in children}, pare

add nodes and edges(T)

display(dot)

