INF TC1 - Lecture 3: Trees

Ecole Centrale de Lyon

romain.vuillemot@ec-lyon.fr

import sys

import os

from graphviz import Digraph

from IPython.display import display
from utils import draw_tree_dict

Outline

e Definitions
e Data structures
* Weighted trees

Trees

Tree is a hierarchical data structure with nodes connected by
edges

e A non-linear data structures (multiple ways to traverse it)
» Nodes are connected by only one path (a series of edges) so trees have no cycle
o Edges are also called links, they can be traversed in both ways (no orientation)

Example of trees:

 Binary trees, binary search trees, N-ary trees, recursive call trees, etc.

+ HOB (Horizontally Ordered Binary), AVL (Adelson-Velskii and Landis, self-balancing
trees), ...

» B-trees, forests, lattices, etc.

Definitions on trees

(similar to the ones for the binary trees)
Nodes - atreeis composed of nodes that containa value and children.
Edges - are the connections between nodes; nodes may contain a value.
Root - the topmost node in a tree; there can only be one root.

Parent and child - each node has a single parent and up to two children.

Leaf - no node below that node.

Depth - the number of edges on the path from the root to that node.

Height - maximum depthin a tree.

Definitions on trees (cont.)

N-ary Tree - atree in which each node can have up to IV children. Binary trees is the
case where N = 2.

Weight - aquantity is associated to the edges.
Degree - the number of child nodes it has. Binary tree is the case where degree is 2.
Subtree - aportion of a tree that is itself a tree.

Forest - acollection of trees not connected to each other.

Data structures (dicts + lists)

A simple way is the adjacency list using a dictionnary dict type.

tree_dict = {

Ilall: [Ilbll’ “C“],
Ilbll: [Ildll’ Ilell]’
IICII: [Ilfll]’

g (1,
"e": [1,
0]

}

draw_tree dict(tree_dict)

Data structures (dicts + named lists)

A variation is to use a named variable for the list.

tree_dict_name = {

"a':
"p:
c':
"g:
e':
e

by

{"neighbors":
{"neighbors":
{"neighbors":
{"neighbors":
{"neighbors":
{"neighbors":

[Ilbll’ "C"]},
[Ildll, Ilell]}
[Ilfll]}’

[1},

[1},

[1}

tree_dict_name["a"]["neighbors"]

[Ibl’

ICI]

Data structures (sets)

The children are unique and not ordered.

tree_set = {

"a": set(["b", "c"]),
Ilbll: set([lldll, Ilell])'
IICII: set([llfll])'
"d": set(),

"e": set(),

"f': set()

Data structures (lists of lists)

e Each node is an entry in the list
e Children are sub-lists

tree list

— e e

c'll,
e'll,
9'll,

’
’
’

- - - - - - -

- - - 0w - - -

’
’
’

= [
['b
['d
['f
[1]
[1]
[1]
[1]

|—||—||—||—||—||—||—||
Q MDD QO T VY H

]
]
]
]

Data structures (tuples)

e Each node is the first tuple
e Children are additionnal tuply entries
e Warning: tuples are immutable (cannot be changed)

tree_tuple = ("a", [
("b", I[1),
("c", I
("d", [
("e", [1)
1)
1)
1)

tree_tuple[@] # cannot be changed

'a

Data structure (class object)

How to create the tree? How to retrieve all nodes? Both iterative and recursive ways.

class Node:
def __init_ (self, value, children = []):
self.value = value
self.children = children

Data structure (class object)

How to create the tree? How to retrieve all nodes? Both iterative and recursive ways.

class Node:

def __init_ (self, value, children = []):
self.value = value

self.children = children

class Node:
def __init_ (self, value, children
self.value = value
self.children = children

[1):

def get_all_nodes(self):
nodes = [self.valuel
for child in self.children:
nodes += child.get_all_nodes()
return nodes

def get_all_nodes_iterative(self):

nodes = []

stack = [self]

while stack:
current_node = stack.pop()
nodes.append(current_node.value)
stack += current_node.children

return nodes

root = Node("a", [
Node("b", [
Node("d"),
Node("e"),
1),
Node("c", [
Node("f"),
1),
1)

or using "root.children"

root.get_all_nodes()

Weighted trees

Trees with a quantity associated to the links or the nodes

» Useful to quantifie both nodes and links
e Storing those values require additionnal data structures

Data structures for weighted trees (dicts for
edges)

» We need to add an extra value to encode values in edges

tree_w_dict = {'a': [{'b': 0}, {'c': 0}],
'b': [{'d': 0}, {'e': 0}1,
'c¢': [{'f': 0}],
'd': [1],
Iel: []
}

tree_w_tuple = {

|: [(Ibl, @)’ (I
“: [('d', @), ('
" [('f', 0)],
R

"1 1]

D QO T Y

Weigthted trees as classes

class Node_weight:
def __init__ (self, data, weight=0):
self.data = data
self.children = []
self.weight = weight

tree = Node_weight(1)

childl = Node_weight(2, weight=5)
child2 = Node_weight(3, weight=7)
tree.children = [childl, child2]

Exercise: Calculate the total weight of a tree

Tip: go through all the nodes and get the edges, then sum their weights.

Exercise: Calculate the total weight of a tree

Tip: go through all the nodes and get the edges, then sum their weights.

def get_tree_edges(root):
edges []
stack = [(root, None)]

while stack:
node, parent_data = stack.pop()

for child in node.children:
stack.append((child, node.data))
edges.append((node.data, child.data, child.weight))

return edges

tree_w_oo = Node_weight(1)

childl = Node_weight(2, weight=5)
child2 = Node_weight(3, weight=7)
tree_w_oo.children = [childl, child2]
get_tree_edges(tree_w_oo)

((1, 2, 5), (1, 3, 7)1

sum(tpl[2] for tpl in get_tree_edges(tree_w_oo)) # 12

Out[22]: 12

Exercise: Calculate the total weight of a tree

A recursive version:

def calculate_total_weight(node):
total_weight = node.weight
for child in node.children:
total_weight += calculate_total_weight(child)
return total_weight

calculate_total_weight(tree_w_oo)

12

An Edge class for edges

» To consider edges as objects

e Can be used as a complement of the nodes (or without the nodes)

class Edge:

def __init__ (self, source, target):

self.source = source
self.target = target

class Node:
def __init__ (self, label):
self.label = label
self.children = []

class Tree:
def __init (self, root_label):
self.root = Node(root_label)
self.edges = []

Check trees properties

e Hierarchical structure
* No cycle
¢ All nodes connected

We will mostly use one of the two traversal methods (BFS and DFS) to achieve this.

Also we will using the dictionnary-based data structure:

tree = {
IIAII: [IIBII’ IICII] ,
IIBII: [IIDII’ IIEII] ,
IICII: [IIFII’ IIGII] ,
IIDII: [IIHII’ IIIII] ,

2R [50)
"y,
"'y (],
"He [,
"Iy (1,
“3": (]

draw_tree dict(tree)

Generalized BFS (Breadth-First Search)

def bfs(tree, start_node):
queue = [start_node]
result = []

while queue:
node = queue.pop(0)
result.append(node)
children = tree.get(node, [])

for child in children:
if child is not None:
queue.append(child)

return result

print(bfs(tree, "A"))

Generalized DFS (Depth-First Search)

def dfs(tree, start_node):

stack = [start_node]
result = []

while stack:

node = stack.pop()
result.append(node)
children = tree.get(node, [])

for child in children:
if child is not None:
stack.append(child)

return result

print(dfs(tree, "A"))

Tree property: are all nodes connected?

Without having a first node and re-using the dfs

def dfs_check_connected(tree, start_node):
if not tree:

return True # an empty tree is considered connected.

visited set()

stack []
stack.append(start_node)
while stack:
node = stack.pop()
if node not in visited:
visited.add(node)
stack.extend(tree.get(node, []))

return len(visited) == len(tree)

dfs_check_connected(tree, "A")

True

Tree property: does the tree have a cycle?

def has_cycle(graph, start_node):
visited = set()
parent = {}

def dfs(node):
visited.add(node)

for neighbor in graph.get(node, []):
if neighbor in parent and parent[node] == neighbor:
continue

if neighbor in visited:
return True

parent [neighbor] = node

if dfs(neighbor):
return True

return False

return dfs(start_node)
has_cycle(tree, "A")

False

What if we add an extra node "K"?
tree["F"] = ["A"]

tree["F"] = ["A"]

has_cycle(tree, "A")

True

Tree property: Check if the tree is an n-ary tree

def is_binary_tree(tree, node, n = 2, visited=None):
if visited 1is None:
visited = set()

if node in visited:
return True

visited.add(node)
children = tree.get(node, [1])

if len(children) > n:
return False

for child in children:
if not is_binary_tree(tree, child, n, visited):
return False

return True

is_binary_tree(tree, "A", 2)

True

Get all the edges of a tree

def generate_edges(graph):
edges = []
for node, neighbors in graph.items():
for neighbor in neighbors:
edges.append((node, neighbor))
return edges

generate_edges(tree)

I' ICI)’
I’ IDI)’
I' IEI)’
I’ IFI)’
I’ IGI)’
I' IHI)’
I’ III)’
I' IJI)’
I’ IAI)]

def generate_edges_dfs(graph, start_node):
edges = []

stack = [start_node]

visited = []

while stack:
node = stack.pop()
visited.append(node)
for neighbor in graph[node]:
if neighbor not in visited:
edges.append((node, neighbor))
stack.append(neighbor)

return edges

generate_edges_dfs(tree, "A")

[

COmMmwwnOn >

'B")
ICI)
F)
'G')
IDI)
E)
'J)
'H')
')

’
’
’
’
’
’
’
’
]

